Contribución del mejoramiento genético al desarrollo agrícola

Luis Barboza Barquero UCR-CIGRAS

Julio 2015

UNIVERSIDAD DE **COSTA RICA**

Centro para Investigaciones en Granos y Semillas

Doebley et al 1995, Genetics

Contribución del mejoramiento genético al desarrollo agrícola

Contribución del mejoramiento genético al desarrollo agrícola

Domesticación del maíz

Domesticación del maíz

Piperno et al 2014, Quaternary International

- Teosinte: el posible ancestro del maíz
- Planta de maiz comenzó a ser mejorada en el 1000 DC
- Claro ejemplo de proceso de domesticación (mejoramiento genético) para el desarrollo agrícola

Domesticación del maíz

- Evidencia arqueológica indica que maíz fue domesticado en México
- Diferencias entre Teosinte y maíz se deben en parte al gen *"teosinte branched1* (tb1)"

Doebley et al 1995, Genetics

tb1: gen relevante en la domesticación del maíz

Cruces entre Teosinte (*parviglumis*) × maíz (reventador) permitió identificar la genética controlando ramificación

Alelos de teosinte

Alelos de maíz

Doebley et al 1995, Genetics

Investigadores observaron que ambiente y epistasis influyen en el fenotipo

Domesticación del teosinte

- Inicio de agricultura 12000-10000 años atrás
- ¿Cómo ocurrió la selección?

Doebley et al 1995, Genetics

Contribución del mejoramiento genético al desarrollo agrícola

Revolución verde

La revolución verde

Norman Borlaug (1914-2009). Foto de "The Plant Cell 2010"

Variedades modernas semi-enanas fueron liberadas en 1960

La revolución verde

- Se liberan variedades de trigo, maíz y arroz altamente productivas
- Se suma desarrollo de fertilizantes y agroquímicos
- Entes protagonistas:
 - CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo) en México
 - IRRI ("International Rice Research Institute") en Filipinas

Base molecular del semi-enanismo está en la biosíntesis y señalización de las giberelinas

Sasaki et al., 2002

Producción utilizando variedades modernas

Revolución verde incrementó considerablemente la producción

Norman Bourlaug uno de los padres de la revolución verde

Durante su trabajo en CIMMYT desarrolló variedades semi-enanas de trigo

Foto de "The Plant Cell 2010"

http://www.normanborlaug.org

Por su contribución en el incremento de la producción se le otorgó el premio nobel de la paz en 1970

Mejoramiento genético

El objetivo del mejoramiento genético es producir nuevas y mejoradas variedades

Khusk 2001, Nature reviews

El mejoramiento genético tiene distintos fines

- Alimento
- Alimentación animal
- Fibra
- Combustible
- Flores
- Diversión

Mejoramiento genético de hoy en día cuenta con varias herramientas

Tecnologías aportan eficiencia, pero siempre se requieren hacer cruces

Principales pasos de un programa de mejoramiento genético

The next green revolution: http://www.nationalgeographic.com/foodfeatures/green-revolution/

Fenotipo es producto de interacción con genotipo y ambiente

Fenotipo = Genotipo + Ambiente + (Genotipo × Ambiente)

Hoy en día se están desarrollando tecnologías para evaluar un fenotipo de manera más eficiente (y detallada)

IBG-2 Jülich, Alemania

Nagel et al 2012 Functional Plant Biology

Factores que influyen el proceso de mejora genética

Moose y Mumm 2008 Plant Physiology

Una característica cuantitativa es más dificil de manejar

Esquemas utilizados en el mejoramiento genético

Esquemas buscan agrupar genes beneficiosos en una sola planta

Moose y Mumm 2008 Plant Physiology

Contribución del mejoramiento genético al desarrollo agrícola

Mejoramiento genético en Costa Rica

Estadísticas de importaciones y exportaciones de semillas en CR durante el 2014

- Importaciones = \$ 33,115,150.57
- Exportaciones = \$ 40,774,956.08

Datos ONS (http://www.ofinase.go.cr/)

• Exportaciones:

Arroz

- Hortalizas
- Frutales
- Algodón
- Ornamentales follaje
- Oleaginosas
- Flores
- Varios

Semillas Oleaginosas y de flores representan un 79% de las exportaciones

Recursos disponibles en el país

- Recurso humano (¿Sí o No?)
- Infraestructura
- Bancos de semillas / germoplasma

- Ejemplo banco de CATIE

Variabilidad natural presente en el país

Cultivos emergentes

- Plantas por domesticar (cultivos no tradicionales)

 Distintos microclimas para validación de materiales

Mejoramiento genético en Costa Rica

- Arroz (CIGRAS-UCR, CIBCM-UCR, SENUMISA, Conarroz, INARROZ, INTA)
- Café (CATIE, CICAFE)
- Caña de azucar (DIECA)
- Chile (EEFBM-UCR)
- Banano (Corbana)
- Frijol (EEFBM-UCR)
- Guayaba (EEFBM-UCR)
- Maíz (INTA)
- Ornamentales (CIGRAS-UCR, EEFBM-UCR, Linda vista)
- Papa (CIA-UCR)
- Papaya (EEFBM-UCR, INTA)
- Palma aceitera (ASD)
- Soya (CIGRAS-UCR)
- y más cultivos (e instituciones)...

Ejemplo: mejoramiento genético de papaya en Costa Rica

- Programa realizado por Eric Mora y Antonio Bogantes
 - Colaboración UCR-INTA
- En Costa Rica no existían materiales estables de papaya
- Proyecto se dio a la tarea de mejorar la producción y calidad de los frutos

Ejemplo: mejoramiento genético de papaya en Costa Rica

- Proyecto empezó en 1999
- Se realizaron cruces entre materiales criollos y los del grupo "Solo"
- Por medio de método del pedigree se seleccionaron características agronómicas y de calidad superiores
- Híbrido resultante (2004) se denominó "Pococí", conocido en el mercado como "Papaya perfecta" (2006 liberado)

Papaya Pococí

Imagen brindada por Antonio Bogantes, Eric Mora

Principales pasos de un programa de mejoramiento genético

Esquema de mejoramiento pedigree

Modificado de Chahal y Gosal 2002

Validación del híbrido Pococí

Cuadro 4. Rendimiento del primer ciclo de floración en el híbrido "Pococí" en dos parcelas de validación. Guápiles, Limón. 2004.

# Parcela	kg de fruta/ parcela	kg de fruta/ha
1 (Guácimo)	47.445	95.848
2 (Guápiles)	24.700	131.733

Figura 1. Rendimiento mensual de papaya híbrida "Pococí". Guácimo, Limón.2002-2003.

Figura 2. Rendimiento mensual de papaya híbrida "Pococí". Guápiles, Limón. 2003-2004.

Bogantes y Mora, 2006, Alcances tecnológicos

Proceso de validación es riguroso

Híbrido Pococí ha sido aceptado en el mercado costarricense

Producción de semilla comercial: Eric Mora-Antonio Bogantes (UCR-INTA) 2014

Esto representa 150-200 productores costarricenses beneficiados

Además en 2013 se exportaron 3776 TM y en 2014, 4781 TM

Contribución del mejoramiento genético al desarrollo agrícola

Desafíos y oportunidades

¿Cómo alimentar 9000 millones de personas para el 2050?

National geographic, http://www.ngenespanol.com/comida/713691/cinco-pasos-alimentar-al-mundo/

¿Cómo alimentar 9000 millones de personas para el 2050 sin causar daños al ambiente?

De acuerdo a "National geographic", podrían haber 5 pasos:

1. Congelar el aumento de tierra dedicada a la agricultura

- 2. Aumentar producción en las áreas disponibles
- 3. Hacer uso más eficiente de recursos
- 4. Cambiar dietas
- 5. Reducir el desperdicio

Al trabajar en el campo agropecuario Estamos involucrados en casi todos los pasos Mejoramiento genético contribuye considerablemente en el paso 2

National geographic, http://www.ngenespanol.com/comida/713691/cinco-pasos-alimentar-al-mundo/

Desafíos

A parte de aumento en población, tenemos otros desafíos:

- Cambio climático
- Competir en mercados nacionales e internacionales
 - Innovación
 - Políticas de semillas que dirijan los esfuerzos a un punto común

Oportunidades del mejoramiento genético en países en desarrollo

Producir tecnología

- Productos con mayor valor agregado (semillas)

Conclusiones

Conclusiones

- El mejoramiento genético ha tenido un rol fundamental en el desarrollo de la agricultura y por lo tanto en las sociedades de todo el mundo
- Costa Rica tiene potencial para desarrollar mejoramiento genético y comercializar tecnología agrícola

Agradecimientos

¡Gracias a ustedes por la atención!

UNIVERSIDAD DE **COSTA RICA**

¡Invitación a próximo taller!

Workshop invitation:
SPONSORS:

STATE OF THE ART - SEED CERMINATION PHENOTYPING TECHNOLOGIES AND THEIR APPLICATION FOR CENETIC STUDIES
Image: Construction of the second of th

UNIVERSIDAD DE **COSTA RICA**

Más información: http://www.cigras.ucr.ac.cr

Conclusiones

- El mejoramiento genético ha tenido un rol fundamental en el desarrollo de la agricultura y por lo tanto en las sociedades de todo el mundo
- Costa Rica tiene potencial para desarrollar mejoramiento genético y comercializar tecnología agrícola